
1

spring-mvp 1.0 Manual
Christoph Guse <info@flexguse.de>

Copyright © 2013 flexguse.de

Table of Contents
1. Introduction ... 1

1.1. Event Driven Applications ... 2
1.2. Model View Presenter (MVP) .. 3

2. Prerequisites ... 6
3. Using spring-mvp ... 6

3.1. Spring configuration ... 6
3.2. spring-mvp Application ... 7
3.3. Vaadin Server push .. 8

4. Event Dispatching ... 8
4.1. SpringMvpEvent .. 10
4.2. SpringMvpDispatcher .. 11
4.3. DispatcherManager .. 14
4.4. Event Registration .. 16

5. Model-View-Presenter (MVP) ... 18
5.1. Model ... 18
5.2. View .. 18
5.3. Presenter ... 19
5.4. UI Service ... 21

6. spring-mvp additional features ... 26
6.1. Application notifications .. 26
6.2. Model events ... 27
6.3. Internationalization .. 28

1. Introduction
spring-mvp is an Vaadin addon which mainly realizes two general ideas: event driven applications and
the pattern of Model, View and Presenter (mvp). The Spring Framework [http://www.springsource.org/
spring-framework] is used to configure and inject Views and Presenters.

Vaadin Addon Repository https://vaadin.com/directory [https://vaadin.com/directory]

Git Repository https://bitbucket.org/flexguse/springmvp-addon [https://bitbucket.org/flexguse/
springmvp-addon]

Issues Tracker https://bitbucket.org/flexguse/springmvp-addon/issues [https://bitbucket.org/flexguse/
springmvp-addon/issues]

Demo application http://springmvp-demo.flexguse.cloudfoundry.com/ [http://springmvp-
demo.flexguse.cloudfoundry.com/]

http://www.springsource.org/spring-framework
http://www.springsource.org/spring-framework
http://www.springsource.org/spring-framework
https://vaadin.com/directory
https://vaadin.com/directory
https://bitbucket.org/flexguse/springmvp-addon
https://bitbucket.org/flexguse/springmvp-addon
https://bitbucket.org/flexguse/springmvp-addon
https://bitbucket.org/flexguse/springmvp-addon/issues
https://bitbucket.org/flexguse/springmvp-addon/issues
https://bitbucket.org/flexguse/springmvp-addon/issues
http://springmvp-demo.flexguse.cloudfoundry.com/
http://springmvp-demo.flexguse.cloudfoundry.com/
http://springmvp-demo.flexguse.cloudfoundry.com/

spring-mvp 1.0 Manual

2

1.1. Event Driven Applications

The idea of a event driven application is simple. Somewhere in the application an event is dispatched and
somewhere in the application there is a listener which listens for the event and does something with the
idea.

In Vaadin there already exists the possibility for UI components to dispatch events.

This is a good approach to listen for events but it gets difficult if the Eventlisteners need to be centralized
and reused or the layout of the application gets complex. Then the EventListener needs detail knowledge
of the UI and is tightly coupled. No chance to change the UI without changing the EventListener.

In spring-mvp there is the idea of a DispatcherManager which is available all over the application.
A UI component registers itself als EventListener in the DispatcherManager and there is
absolutely no need for th EventListener how it is used in the UI. Events are dispatched using the
DispatcherManager.

spring-mvp 1.0 Manual

3

1.2. Model View Presenter (MVP)
Developing Applications in Vaadin is easy. Only some UI components needs to be instantiated and
combined, some listeners need to be registered and the small application is complete. This procedure leads
to quick results but the resulting code tends to be long and difficult to maintain. An example taken from
the Vaadin sampler.

 1
 2 package com.vaadin.demo.sampler.features.trees;
 3
 4 import java.util.Collection;
 5
 6 import com.vaadin.data.Item;
 7 import com.vaadin.data.Property;
 8 import com.vaadin.data.Property.ValueChangeEvent;
 9 import com.vaadin.demo.sampler.ExampleUtil;
 10 import com.vaadin.event.Action;
 11 import com.vaadin.ui.AbstractSelect;
 12 import com.vaadin.ui.Alignment;
 13 import com.vaadin.ui.Button;
 14 import com.vaadin.ui.Button.ClickEvent;
 15 import com.vaadin.ui.HorizontalLayout;
 16 import com.vaadin.ui.TextField;
 17 import com.vaadin.ui.Tree;
 18
 19 @SuppressWarnings("serial")
 20 public class TreeSingleSelectExample extends HorizontalLayout implements
 21 Property.ValueChangeListener, Button.ClickListener, Action.Handler {

spring-mvp 1.0 Manual

4

 22
 23 // Actions for the context menu
 24 private static final Action ACTION_ADD = new Action("Add child item");
 25 private static final Action ACTION_DELETE = new Action("Delete");
 26 private static final Action[] ACTIONS = new Action[] { ACTION_ADD,
 27 ACTION_DELETE };
 28
 29 private Tree tree;
 30
 31 HorizontalLayout editBar;
 32 private TextField editor;
 33 private Button change;
 34
 35 public TreeSingleSelectExample() {
 36 setSpacing(true);
 37
 38 // Create the Tree,a dd to layout
 39 tree = new Tree("Hardware Inventory");
 40 addComponent(tree);
 41
 42 // Contents from a (prefilled example) hierarchical container:
 43 tree.setContainerDataSource(ExampleUtil.getHardwareContainer());
 44
 45 // Add Valuechangelistener and Actionhandler
 46 tree.addListener(this);
 47
 48 // Add actions (context menu)
 49 tree.addActionHandler(this);
 50
 51 // Cause valueChange immediately when the user selects
 52 tree.setImmediate(true);
 53
 54 // Set tree to show the 'name' property as caption for items
 55 tree.setItemCaptionPropertyId(ExampleUtil.hw_PROPERTY_NAME);
 56 tree.setItemCaptionMode(AbstractSelect.ITEM_CAPTION_MODE_PROPERTY);
 57
 58 // Expand whole tree
 59 for (Object id : tree.rootItemIds()) {
 60 tree.expandItemsRecursively(id);
 61 }
 62
 63 // Create the 'editor bar' (textfield and button in a horizontallayout)
 64 editBar = new HorizontalLayout();
 65 editBar.setMargin(false, false, false, true);
 66 editBar.setEnabled(false);
 67 addComponent(editBar);
 68 // textfield
 69 editor = new TextField("Item name");
 70 editor.setImmediate(true);
 71 editBar.addComponent(editor);
 72 // apply-button
 73 change = new Button("Apply", this, "buttonClick");
 74 editBar.addComponent(change);
 75 editBar.setComponentAlignment(change, Alignment.BOTTOM_LEFT);
 76 }
 77
 78 public void valueChange(ValueChangeEvent event) {
 79 if (event.getProperty().getValue() != null) {
 80 // If something is selected from the tree, get its 'name' and
 81 // insert it into the textfield

spring-mvp 1.0 Manual

5

 82 editor.setValue(tree.getItem(event.getProperty().getValue())
 83 .getItemProperty(ExampleUtil.hw_PROPERTY_NAME));
 84 editor.requestRepaint();
 85 editBar.setEnabled(true);
 86 } else {
 87 editor.setValue("");
 88 editBar.setEnabled(false);
 89 }
 90 }
 91
 92 public void buttonClick(ClickEvent event) {
 93 // If the edited value contains something, set it to be the item's new
 94 // 'name' property
 95 if (!editor.getValue().equals("")) {
 96 Item item = tree.getItem(tree.getValue());
 97 Property name = item.getItemProperty(ExampleUtil.hw_PROPERTY_NAME);
 98 name.setValue(editor.getValue());
 99 }
100 }
101
102 /*
103 * Returns the set of available actions
104 */
105 public Action[] getActions(Object target, Object sender) {
106 return ACTIONS;
107 }
108
109 /*
110 * Handle actions
111 */
112 public void handleAction(Action action, Object sender, Object target) {
113 if (action == ACTION_ADD) {
114 // Allow children for the target item, and expand it
115 tree.setChildrenAllowed(target, true);
116 tree.expandItem(target);
117
118 // Create new item, set parent, disallow children (= leaf node)
119 Object itemId = tree.addItem();
120 tree.setParent(itemId, target);
121 tree.setChildrenAllowed(itemId, false);
122
123 // Set the name for this item (we use it as item caption)
124 Item item = tree.getItem(itemId);
125 Property name = item.getItemProperty(ExampleUtil.hw_PROPERTY_NAME);
126 name.setValue("New Item");
127
128 } else if (action == ACTION_DELETE) {
129 Object parent = tree.getParent(target);
130 tree.removeItem(target);
131 // If the deleted object's parent has no more children, set its
132 // childrenallowed property to false (= leaf node)
133 if (parent != null) {
134 Collection<?> children = tree.getChildren(parent);
135 if (children != null && children.isEmpty()) {
136 tree.setChildrenAllowed(parent, false);
137 }
138 }
139 }
140 }
141 }

spring-mvp 1.0 Manual

6

142

Maybe this example is a little bit long, but it it demonstrates that pure Vaadin code tends to be Spaghetti-
Code which is hard to maintain, especially if the maintainer has not created the code.

The spring-mvp idea tries to decouple code and to create a structure so it is clear where to find the layout
and the logic of a application:

• The model (known as Bean, ValueObject(VO) etc.) contains the data to show in the application.

• The view contains only the layout.

• The presenter contains the logic for the layout.

With this approach the code is more structured, each part is cleary arranged.

Example 1. spring-mvp

2. Prerequisites
spring-mvp is based on Vaadin 6.x, Java 1.6, Spring 3.1.2 and dellroad-stuff-vaadin 1.0.594. This addon
works with Java 1.7, but there is currently no support for Vaadin 7 available.

3. Using spring-mvp

3.1. Spring configuration
First of all the basis, Spring, needs to be configured and enabled for the Vaadin web application. This
configuration is not spring-mvp specific but a common Spring web application configuration.

There are several configurations necessary to get spring-mvp up and running. Spring can also be configured
using Annotations, which is documented in the Spring documentation. If Maven is used (which is highly
recommended), all needed dependencies are provided by spring-mvp.

All configuration examples are taken from the demo application. In the Demo-Application Spring is mainly
configured using XML configuration files.

Spring can also be configured using Annotations, which is documented in the Spring documentation.

spring-mvp 1.0 Manual

7

3.1.1. WEB-INF/web.xml

Set the location of the Spring configuration XML file.

 1 <context-param>
 2 <param-name>contextConfigLocation</param-name>
 3 <param-value>/WEB-INF/spring/web-application-context.xml</param-value>
 4 </context-param>

The path to the web application context configuration file can of course be customized.

Add the necessary listeners.

 1 <listener>
 2 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 3 </listener>
 4 <!-- needed to set the translators locale from the browser request -->
 5 <listener>
 6 <listener-class>org.springframework.web.context.request.RequestContextListener</listener-class>
 7 </listener>

3.1.2. Spring application context

Define all Objects (Services, Resource-Bundles etc.) in this context if they should be available in all Vaadin
application instances.

Example 2. WEB-INF/spring/web-application-context.xml

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <beans xmlns="http://www.springframework.org/schema/beans"
 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/
beans/spring-beans.xsd">
 5
 6 </beans>
 7

3.2. spring-mvp Application
To use spring-mvp in Vaadin applications the Vaadin application needs to extend
SpringMvpVaadinApplication.

Example 3. src/main/java/de/flexguse/vaadin/addon/springMvp/
applicationAddonDemoApplication.java

 1 public class AddonDemoApplication extends SpringMvpVaadinApplication...{}

Then the application needs to be known by Spring.

Example 4. WEB-INF/spring/vaadin-application-context.xml

 1 <bean id="demoApplication"
 2 class="de.flexguse.vaadin.addon.springMvp.demo.AddonDemoApplication"
 3 factory-method="get">
 4 </bean>

spring-mvp 1.0 Manual

8

Warning

Do not forget to set the factory-method, otherwise the Autowiring won't work properly.

And the last necessary configuration is to configure Spring to look for annotations.

Example 5. WEB-INF/spring/vaadin-application-context.xml

 1 <!-- enable configuration by annotation like @Autowired or @HandleSpringMvpEvent -->
 2 <context:annotation-config />

3.3. Vaadin Server push

While dispatching spring-mvp events Vaadin applications are changed serverside. Without a Server push
mechanism the changes in the Vaadin applications are not reported to the Client browsers.

It is strongly recommended to use a Server push mechanism to ensure the correct behavior of spring-mvp.
In the springMvp demo application dontpush-addon-ozonelayer [https://vaadin.com/directory#addon/
dontpush-ozonelayer:vaadin] was used wich performed quite well.

Currently there is no Server push available in Vaadin 7, that's the reason why spring-mvp does not support
Vaadin 7 but Vaadin 6.x.

3.3.1. No Server push example

A Vaadin application was created in which a User with the role Administrator is able to send a
notification message to all Vaadin application instances. Using spring-mvp this is not a hard task using the
DispatcherManger. The DispatcherManager calls the event listener methods of all Vaadin application
instances and the application the Administrator uses show the notification message.

All other applications do not show the notification immediately. The users have to click somewhere so the
browser part of the Vaadin application gets awave of the notification message.

4. Event Dispatching
Eventdispatching is one of the key features of spring-mvp. There are a couple of objects involved in
dispatching evenents, the mostly used are SpringMvpDispatcher and the DispatcherManager.

Dispatching an Event is simple. First of all create an Event class that extends .

https://vaadin.com/directory#addon/dontpush-ozonelayer:vaadin
https://vaadin.com/directory#addon/dontpush-ozonelayer:vaadin
https://vaadin.com/directory#addon/dontpush-ozonelayer:vaadin

spring-mvp 1.0 Manual

9

Example 6. de.flexguse.vaadin.addon.springMvp.demo.ui.events.ShowArticlesViewEvent

 1 package de.flexguse.vaadin.addon.springMvp.demo.ui.events;
 2
 3 import de.flexguse.vaadin.addon.springMvp.events.SpringMvpEvent;
 4
 5 /**
 6 * Dispatch this event to show the Article View.
 7 *
 8 * @author Christoph Guse, info@flexguse.de
 9 *
 10 */
 11 public class ShowArticlesViewEvent extends SpringMvpEvent {
 12
 13 private static final long serialVersionUID = -7682300622168995827L;
 14
 15 public ShowArticlesViewEvent(Object eventSource) {
 16 super(eventSource, null);
 17 }
 18
 19 }

After that create a EventListener which listens for the event.

Example 7. de.flexguse.vaadin.addon.springMvp.demo.AddonDemoApplicationPresenter

 1 package de.flexguse.vaadin.addon.springMvp.demo;
 2
 3 ...
 4 /**
 5 * This Presenter contains logic for the {@link AddonDemoApplication}.
 6 *
 7 * @author Christoph Guse, info@flexguse.de
 8 *
 9 */
 10 public class AddonDemoApplicationPresenter extends
 11 AbstractPresenter<AddonDemoApplication> {
 12
 13 @Autowired
 14 private ApplicationContext springContext;
 15
 16 ...
 17 @HandleSpringMvpEvent
 18 public void handleShowArticlesView(ShowArticlesViewEvent event) {
 19 getView().setView(springContext.getBean(ArticlesManagement.class));
 20 }
 21 }
 22

The EventListener can be any object. Just implement a method which has your SpringMvpEvent as
attribute and annotate this method with @HandleSpringMvpEvent.

And then just dispatch the ShowArticlesViewEvent somewhere in your application.

spring-mvp 1.0 Manual

10

Example 8. de.flexguse.vaadin.addon.springMvp.demo.AddonDemoApplication

 1 package de.flexguse.vaadin.addon.springMvp.demo;
 2
 3 /**
 4 * The Application's "main" class.
 5 *
 6 * @author Christoph Guse, info@flexguse.de
 7 */
 8 @SuppressWarnings("serial")
 9 public class AddonDemoApplication extends SpringMvpVaadinApplication implements
 10 View<AddonDemoApplicationPresenter> {
 11
 12 @Override
 13 protected void initSpringApplication(ConfigurableWebApplicationContext arg0) {
 14
 15 ...
 16 presenter.dispatchEvent(new ShowShoppingCartViewEvent(this));
 17
 18 }
 19 ...
 20 }

spring-mvp is designed to have a SpringMvpDispatcher in several scopes:

• Web Application scope: only one instance for all Vaadin application instances.

• Vaadin application scope: events dispatched in this scope are only sent to the current Vaadin application.
Eventdispatching to other than the current Vaadin application instance is not possible.

• Custom scope: a SpringMvpDispatcher can be instantiated in a custom component and only lives as
long the custom component lives

The different Dispatcher scopes can be achieved by configuring SpringMvpDispatcher in different Spring
context configuration files.

A SpringMvpDispatcher implementation is a kind of Map in which the Key is the SpringMvpEvent class
and the value is a list of event listeners.

4.1. SpringMvpEvent

All custom events handled by spring-mvp must extend SpringMvpEvent.

spring-mvp 1.0 Manual

11

The abstract class SpringMvpEvent contains some information which is essential for spring-mvp event
dispatching.

4.1.1. ExecutionType
spring-mvp provides two execution types of event handling. Setting ExecutionType.SYNC means the
event listening methods are executed immediately and the application part which dispatched the event
waits until all listening methods were called.

In case of long running listening methods this behavior is not wanted. Set ExecutionType.ASYNC
means the listening methods are executed in a background task and the application is immediately ready
to proceed.

4.1.2. EventScope
Setting the EventScope decides in the DispatcherManager which SpringMvpDispatcher is
used for event listener method execution.

By default in spring-mvp there are two EventScopes defined:
EventScope.SpringMvpApplication and EventScope.AllSpringMvpApplications.
The predefined EventScopes can be easily extended by setting own EventScopes.

4.1.3. GenericType
spring-mvp allows the creation and dispatching of generic SpringMvpEvents (see
ModelWasAddedEvent<T>). At runtime in Java it is not possible to get the generic information which
is essential for correct event listener method registration. Therefore the generic type information must be
set as attribute in the SpringMvpEvent class.

4.2. SpringMvpDispatcher
The SpringMvpDispatcher provides several methods to register/unregister EventListeners and to
dispatch events.

spring-mvp 1.0 Manual

12

Please have a look at the Javadoc to get an idea what the methods do in detail.

It is up to the user to use the SpringMvpDispatcher directly or to use the DispatcherManager.

For convenience it is advocated to use the DispatcherManager.

4.2.1. Configuration

The SpringMvpDispatcher is used for dispatching event. To dispatch events to all Vaadin application
instances (from one browser to another) the SpringMvpDispatcher needs to be configured in the
Spring context for the complete web application. In the demo application this is WEB-INF/spring/
web-application-context.xml in Spring singleton scope.

Example 9. WEB-INF/spring/web-application-context.xml

 1 <!-- The dispatchers and dispatcherManager used for this vaadin application -->
 2 <bean id="overallSpringMvpDispatcher"
 3 class="de.flexguse.vaadin.addon.springMvp.dispatcher.impl.SpringMvpDispatcherImpl"
 4 destroy-method="close" scope="singleton" parent="abstractDispatcher">
 5 <constructor-arg name="syncTaskExecutor" ref="commonSyncTaskExecutor" />
 6 <constructor-arg name="asyncTaskExecutor" ref="commonAsyncTaskExecutor" />
 7 </bean>

spring-mvp 1.0 Manual

13

4.2.2. AbstractEventDispatcher

The AbstractEventDispatcher is the base class for all SpringMvpDispatcher implementations. Beside some
useful methods it contains the SpringmvpHandlerUtil which is used to do the EventListener class
introspection. Define the AbstractEventDispatcher and SpringMvpHandlerUtil only once in your Spring
context. In the demo application this is done in

Example 10. springMvp-addon/src/main/resources/springMvp-context.xml

 1 <!-- The Utility which examines objects for annotations -->
 2 <bean id="springMvpUtil" class="de.flexguse.vaadin.addon.springMvp.util.SpringMvpHandlerUtil"
 3 scope="singleton"/>

which is imported into springMvp-demo/src/main/webapp/WEB-INF/spring/web-
application-context.xml

4.2.3. EventHandlersCaller

An EventHandlersCaller is a spring-mvp technical class manages the method calling for one
SpringMvpEvent. There is no need to use EventHandlerCaller directly, but it must be defined
in the Spring configuration with Spring scope "prototype".

Example 11. springMvp-addon/src/main/resources/springMvp-context.xml

 1 <bean class="de.flexguse.vaadin.addon.springMvp.dispatcher.impl.EventHandlersCallerImpl"
 2 destroy-method="cleanUp" scope="prototype" parent="abstractDispatcher"/>

4.2.4. TaskExecutors

In spring-mvp Events can be dispatched synchronously and asynchronously. If you know the Event
causes a long running task, dispatch it asynchronously. The execution of the Events is done using the
Spring TaskExecutor abstraction (see Spring documentation). [http://static.springsource.org/spring/
docs/3.1.x/spring-framework-reference/html/scheduling.html#scheduling-task-executor]

A SpringMvpDispatcher always has two TaskExecutors: syncTaskExecutor and
asyncTaskExecutor. Configure the TaskExecutorfor your needs. For the demo application this was
done in

Example 12. springMpv-demo/src/main/webapp/WEB-INF/spring/vaadin-
application-context.xml

 1 <!-- The Spring Task executors -->
 2 <bean id="syncTaskExecutor" class="org.springframework.core.task.SyncTaskExecutor" />
 3
 4 <bean id="asyncTaskExecutor"
 5 class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 6 <property name="corePoolSize" value="5" />
 7 <property name="maxPoolSize" value="10" />
 8 <property name="queueCapacity" value="25" />
 9 </bean>

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/scheduling.html#scheduling-task-executor
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/scheduling.html#scheduling-task-executor
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/scheduling.html#scheduling-task-executor

spring-mvp 1.0 Manual

14

4.2.5. SpringMvpHandlerUtil

The SpringMvpHandlerUtil does the Eventhandler introspection to get the methods which need
to be registered in the EventHandlers. In future versions there are plans to implement caching in the
SpringMvpHandlerUtil so it is a good idea to only have one instance per JVM.

In the demo application the configuration of SpringMvpHandler is done in

Example 13. springMvp-addon/src/main/resources/springMvp-context.xml

 1 <!-- The Utility which examines objects for annotations -->
 2 <bean id="springMvpUtil" class="de.flexguse.vaadin.addon.springMvp.util.SpringMvpHandlerUtil"
 3 scope="singleton"/>

4.3. DispatcherManager
The DispatcherManager is a wrapper for multiple SpringMvpDispatcher which allocates the
correct dispatcher by the EventScope. In the current Implementation there are convenience method to have
SpringMvpDispatcher for two EventScopes, but you are free to register more.

Using the DispatcherManager is simple. Inject it into your classes and dispatch an Event.

spring-mvp 1.0 Manual

15

 1 @Autowired
 2 private DispatcherManager dispatcherManager;
 3 ...
 4 public void dispatchEvent(){
 5 dispatcherManager.dispatcheEvent(new SpringMvpEvent());
 6 }

Which SpringMvpDispatcher is used is set by the EventScope set in the SpringMvpEvent. By
default the EventScope EventScope.SpringMvpApplication is set, the event is dispatched in the
current Vaadin application.

If the event shall be dispatched to all Vaadin applications, set the EventScope to
EventScope.AllSpringMvpApplications.

4.3.1. DispatcherManager configuration

Ensure only one instance of DispatcherManager exists once per Vaadin application. In the demo
application it is defined in

spring-mvp 1.0 Manual

16

Example 14. springMvp-demo/src/main/webapp/WEB-INF/spring/vaadin-
application-context.xml

 1 <bean id="dispatcherManager"
 2 class="de.flexguse.vaadin.addon.springMvp.dispatcher.impl.DispatcherManagerImpl">
 3 <property name="applicationDispatcher" ref="springMvpDispatcher" />
 4 <property name="allApplicationsDispatcher" ref="overallSpringMvpDispatcher" />
 5 <property name="springMvpHandlerUtil" ref="springMvpUtil" />
 6 </bean>

4.4. Event Registration

Event registration can be done manually or automatically. For manual registration inject the
SpringMvpDispatcher or the DispatcherManaegr and register a method for an event.

In some cases this can be useful, especially if the Vaadin methods

attach()

and

detach()

are overwritten in which methods are registered/unregistered at a injected SpringMvpDispatcher.

But for convenience it is much better to use annotations.

4.4.1. SpringMvpBeanPostProcessor

To get the spring-mvp annotations @HandleSpringMvpEvent and @HandleSpringMvpEvents
running the SpringMvpBeanPostProcessor must be registered in the Spring context so each
Spring controlled bean is examined for the spring-mvp annotations and eventually registerd in the
DispatcherManager.

In the demo application the SpringMvpBeanPostProcessor is defined in

spring-mvp 1.0 Manual

17

Example 15. springMvp-demo/src/main/webapp/WEB-INF/spring/vaadin-
application-context.xml

 1 <!-- The Spring postprocessor which handles the annotated beans -->
 2 <bean class="de.flexguse.vaadin.addon.springMvp.util.SpringMvpBeanPostProcessor">
 3 <constructor-arg name="dispatcherManager" ref="dispatcherManager" />
 4 </bean>

Each time Spring instantiates a new bean the bean is searched for annotated methods and if that methods
are found, the bean is registered as EventListener in the DispatcherManager.

Using the SpringMvpBeanPostProcessor means ony Spring instantiated beans are searched for
annotated methods. Creating beans containing annotated methods using

new EventListener()

in your code means NOT the bean is automatically registered at the SpringMvpDispatcher.

As described before unregistering of EventListeners can be done manually. In case of using
SpringMvpBeanPostProcessor and annotation driven event registration no unregistration is done.
This means no memory lock because internally the SpringMvpDispatchers use WeakReferences so
the EventListener can be garbage collected even if it still registered in a dispatcher.

4.4.2. @HandleSpringMvpEvent

This annotation is used to register a method for a single event. With no explicitly given eventScopes,
the method is registered in EventScope.SpringMvpApplication which means the method is only
executed if the event was dispatched from the current Vaadin application.

 1 @HandleSpringMvpEvent
 2 public void handleOpenShoppingCartEditorEvent(final OpenModelEditorEvent<ShoppingCart> event){...}

If the method needs to listen for the event in several scopes, set the eventScopes explicitely.

 1 @HandleSpringMvpEvent(eventScopes = { EventScope.AllSpringMvpApplications,
 EventScope.SpringMvpApplication })
 2 public void handleArticleWasAdded(ModelWasAddedEvent<Article> event) {
 3 eventList.addEvent(event);
 4 }

4.4.3. @HandleSpringMvpEvents

In some cases a EventListener method shall be called for several events. In this case the
method argument must be of type SpringMvpEvent and the method must be annotated with
@HandleSpringMvpEvents. If no EventScope is given, the default listening scope is
EventScope.SpringMvpApplication.

 1 @HandleSpringMvpEvents(value = {
 2 ShowErrorMessageEvent.class, ShowHumanizedMessageEvent.class,
 3 ShowTrayNotificationEvent.class, ShowWarningMessageEvent.class,
 4 OpenMessageEditorEvent.class, ShowArticlesViewEvent.class,
 5 ShowShoppingCartViewEvent.class })
 6 public void handleSpringMvpEvent(SpringMvpEvent event) {
 7
 8 eventList.addEvent(event);
 9 }

spring-mvp 1.0 Manual

18

The method in this example is called if any of the given events is dispatched.

Additionally the listening EventScope can be given.

 1 @HandleSpringMvpEvents(eventScopes = { EventScope.AllSpringMvpApplications,
 2 EventScope.SpringMvpApplication }, value = {
 3 ShowErrorMessageEvent.class, ShowHumanizedMessageEvent.class,
 4 ShowTrayNotificationEvent.class, ShowWarningMessageEvent.class,
 5 OpenMessageEditorEvent.class, ShowArticlesViewEvent.class,
 6 ShowShoppingCartViewEvent.class })
 7 public void handleSpringMvpEvent(SpringMvpEvent event) {
 8
 9 eventList.addEvent(event);
 10 }

5. Model-View-Presenter (MVP)
The MVP part in spring-mvp is nothing which must be implemented but it is a general idea how to structure
a complex application codebase so it is easy to find layout or functionality for maintenance. The previously
shown MVP figure needs some extention.

5.1. Model
The Model is a Value Object (VO) or just Bean. VOs and Beans are objects which hold business specific
data and mostly no logic. In the demo application these VOs are Article, Model and ShoppingCart.

In spring-mvp Models do not need to extend or implement anything.

5.2. View
In spring-mvp the View is a Vaadin UI component. A View can be the complete layout of an application
or maybe a PopUp window or a custom Table component.

In a View there should be only the layout and normally no logic. The logic is implemented in the Presenter
which is part of each View. The setter for the Presenter is the only mandatory method in the View.

spring-mvp 1.0 Manual

19

An example for a View is AddonDemoApplication:

 1 public class AddonDemoApplication extends SpringMvpVaadinApplication implements
 2 View<AddonDemoApplicationPresenter> {
 3 ...
 4
 5 /**
 6 * If you want to autowire the Presenter, add @Autowired to the setter so
 7 * the registration of the View is done in this method.
 8 * <p>
 9 * Normally it would be a good idea to configure the presenter in the Spring
 10 * xml configuration, this does not work for the Application.
 11 * </p>
 12 */
 13 @Autowired
 14 public void setPresenter(AddonDemoApplicationPresenter presenter) {
 15 this.presenter = presenter;
 16 presenter.setView(this);
 17 }
 18 ...
 19 }

While setting the Presenter in the View the View needs to be set in the Presenter.

To use Spring dependency injection all Views need to be configured as Spring beans. It is essential to
set the Spring scope "prototype" so every time a new instance of the View is created. If another scope is
set, like "singleton" for reusing View components, the View components are not properly shown in the
Vaadin application.

 1 <bean id="articlesManagement"
 2 class="de.flexguse.vaadin.addon.springMvp.demo.ui.component.articles.ArticlesManagement"
 3 scope="prototype">
 4 <property name="presenter" ref="articlesManagementPresenter" />
 5 <property name="translationPrefix" value="articles" />
 6 </bean>

5.3. Presenter

The Presenter contains all the logic for Views. Registering Vaadin event listeners on Vaadin components,
implementing spring-mvp Event listener methods and other logic can be bulky and should not be mixed
with the layout and should be clearly separated into the Presenter.

In spring-mvp there is an AbstractPresenter which contains some logic needed by all Presenters.
All Presenters in a spring-mvp application must extend AbstractPresenter.

spring-mvp 1.0 Manual

20

The Presenter is a good place to implement View specific Event listener methods like in the
AddonDemoApplicationPresenter.

 1 /**
 2 * This Presenter contains logic for the {@link AddonDemoApplication}.
 3 *
 4 * @author Christoph Guse, info@flexguse.de
 5 *
 6 */
 7 public class AddonDemoApplicationPresenter extends
 8 AbstractPresenter<AddonDemoApplication> {
 9
 10 @Autowired
 11 private ApplicationContext springContext;
 12
 13 @HandleSpringMvpEvent
 14 public void handleShowShoppingCatView(ShowShoppingCartViewEvent event) {
 15 getView().setView(springContext.getBean(ShoppingCartManagement.class));
 16 }
 17
 18 @HandleSpringMvpEvent
 19 public void handleShowArticlesView(ShowArticlesViewEvent event) {
 20 getView().setView(springContext.getBean(ArticlesManagement.class));
 21 }
 22 }

spring-mvp 1.0 Manual

21

This example is quite short but shows how the Presenter communicates with the View: using the
getView() method.

A more complex Presenter is ModelManagementPresenter which is too long to show here but it
demonstrates how the View logic can grow enormously.

Like the Views Presenters needs to be configured in Spring with scope "prototype". This ensures each
View instance has it's own Presenter instance.

 1 <bean id="articlesManagementPresenter"
 2 class="de.flexguse.vaadin.addon.springMvp.demo.ui.component.articles.ArticlesManagementPresenter"
 3 scope="prototype" parent="abstractPresenter">
 4 <property name="modelService" ref="uiArticlesService" />
 5 </bean>

5.4. UI Service

The UI Service is the place where the backend services (for handling the Models) meet the UI. Some could
say this layer is not necessary but a UI Service gives us the possibility to do custom exception handling
and the UI Service is a very good place to implement event listener methods.

All UI Services in a spring-mvp application should extend AbstractUIService.

spring-mvp 1.0 Manual

22

In the spring-mvp demo application Models are always edited in PopUps. UI Services are the perfect
central place to implement the event listening methods which open the Editor PopUps. UI Services
normally have a Spring singleton scope, they exist all the time the Vaadin application exist and are always
ready to open the editor whereas Views and Presenters may have another Spring scope and do not exist
the whole time.

An example for a UI Service is UIArticlesService.

 1 /**
 2 *
 3 */
 4 package de.flexguse.vaadin.addon.springMvp.demo.ui.service;
 5
 6 import java.util.List;
 7
 8 import org.springframework.beans.factory.annotation.Autowired;

spring-mvp 1.0 Manual

23

 9
 10 import com.vaadin.data.Validator.InvalidValueException;
 11
 12 import de.flexguse.vaadin.addon.springMvp.annotations.HandleSpringMvpEvent;
 13 import de.flexguse.vaadin.addon.springMvp.demo.backend.model.Article;
 14 import de.flexguse.vaadin.addon.springMvp.demo.backend.service.ArticleService;
 15 import de.flexguse.vaadin.addon.springMvp.demo.ui.component.articles.ArticleForm;
 16 import de.flexguse.vaadin.addon.springMvp.demo.ui.component.model.ModelFormInterceptor;
 17 import de.flexguse.vaadin.addon.springMvp.demo.ui.events.DeleteModelEvent;
 18 import de.flexguse.vaadin.addon.springMvp.demo.ui.events.OpenModelEditorEvent;
 19 import de.flexguse.vaadin.addon.springMvp.events.SpringMvpEvent.ExecutionType;
 20 import de.flexguse.vaadin.addon.springMvp.events.messages.ShowTrayNotificationEvent;
 21 import de.flexguse.vaadin.addon.springMvp.events.model.ModelWasAddedEvent;
 22 import de.flexguse.vaadin.addon.springMvp.events.model.ModelWasDeletedEvent;
 23 import de.flexguse.vaadin.addon.springMvp.events.model.ModelWasUpdatedEvent;
 24 import de.flexguse.vaadin.addon.springMvp.service.AbstractUIService;
 25 import de.flexguse.vaadin.addon.springMvp.service.UIService;
 26 import de.steinwedel.vaadin.MessageBox;
 27 import de.steinwedel.vaadin.MessageBox.ButtonType;
 28
 29 /**
 30 * This ArticleService is designed to be used directly in the UI components.
 31 *
 32 * @author Christoph Guse, info@flexguse.de
 33 *
 34 */
 35 public class UIArticlesService extends AbstractUIService implements UIService,
 36 UiModelService<Article> {
 37
 38 @Autowired
 39 private ArticleService articleService;
 40
 41 @Autowired
 42 private ArticleForm articleForm;
 43
 44 /**
 45 * This method gets all Articles from the backend persistence.
 46 *
 47 * @return
 48 */
 49 public List<Article> getAllModels() {
 50
 51 return articleService.getAllActiveArticles();
 52
 53 }
 54
 55 /**
 56 * This method listens for an {@link OpenModelEditorEvent} and opens an
 57 * article editor containing the {@link Article} given by the event.
 58 *
 59 * @param event
 60 */
 61 @SuppressWarnings("static-access")
 62 @HandleSpringMvpEvent
 63 public void handleOpenArticleEditorEvent(
 64 final OpenModelEditorEvent<Article> event) {
 65
 66 articleForm.setArticle(event.getModel());
 67
 68 String editorTitle = translate("articles.editor.title.new");

spring-mvp 1.0 Manual

24

 69 if (!event.isNewModel()) {
 70 editorTitle = translate("articles.editor.title.edit");
 71 }
 72
 73 final MessageBox messageBox = new MessageBox(getMainWindow(), "45%",
 74 "450px", editorTitle, MessageBox.Icon.NONE, articleForm,
 75 MessageBox.BUTTON_DEFAULT_ALIGNMENT,
 76 new MessageBox.ButtonConfig(ButtonType.CANCEL,
 77 translate("cancel")), new MessageBox.ButtonConfig(
 78 ButtonType.SAVE, translate("save")));
 79 final ModelFormInterceptor interceptor = new ModelFormInterceptor();
 80 messageBox.VISIBILITY_INTERCEPTOR = interceptor;
 81 messageBox.show(true, new MessageBox.EventListener() {
 82
 83 private static final long serialVersionUID = 2948376877660010667L;
 84
 85 @Override
 86 public void buttonClicked(ButtonType buttonType) {
 87 if (buttonType.equals(ButtonType.SAVE)) {
 88 try {
 89 articleForm.commit();
 90 articleService.saveArticle(articleForm.getArticle());
 91
 92 if (event.isNewModel()) {
 93 ModelWasAddedEvent<Article> event = new ModelWasAddedEvent<Article>(
 94 this, Article.class);
 95 event.setAddedModel(articleForm.getArticle());
 96 dispatchEvent(event);
 97
 98 // show added tray notification
 99 ShowTrayNotificationEvent trayEvent = new ShowTrayNotificationEvent(
100 this, translate("articles.added.title"),
101 translate("articles.added.info",
102 new Object[] { articleForm
103 .getArticle().getName() }));
104 trayEvent.setExecutionType(ExecutionType.ASYNC);
105 dispatchEvent(trayEvent);
106
107 } else {
108 ModelWasUpdatedEvent<Article> event = new ModelWasUpdatedEvent<Article>(
109 this, Article.class);
110 event.setUpdatedModel(articleForm.getArticle());
111 dispatchEvent(event);
112
113 // show updated tray notification
114 ShowTrayNotificationEvent trayEvent = new ShowTrayNotificationEvent(
115 this, translate("articles.updated.title"),
116 translate("articles.updated.info",
117 new Object[] { articleForm
118 .getArticle().getName() }));
119 trayEvent.setExecutionType(ExecutionType.ASYNC);
120 dispatchEvent(trayEvent);
121 }
122
123 interceptor.setCloseAble(true);
124 messageBox.close();
125
126 } catch (InvalidValueException e) {
127 interceptor.setCloseAble(false);
128 }

spring-mvp 1.0 Manual

25

129
130 } else {
131 interceptor.setCloseAble(true);
132 messageBox.close();
133
134 }
135
136 }
137 });
138
139 }
140
141 @HandleSpringMvpEvent
142 public void handleDeleteArticleEvent(final DeleteModelEvent<Article> event) {
143
144 MessageBox deleteConfirmation = new MessageBox(getMainWindow(),
145 translate("articles.delete.confirmation.title"),
146 MessageBox.Icon.QUESTION, translate(
147 "articles.delete.confirmation.question",
148 new Object[] { event.getToDelete().getName() }),
149 new MessageBox.ButtonConfig(ButtonType.NO, translate("no")),
150 new MessageBox.ButtonConfig(ButtonType.YES, translate("yes")));
151 deleteConfirmation.show(true, new MessageBox.EventListener() {
152
153 private static final long serialVersionUID = -7925625315552580719L;
154
155 @Override
156 public void buttonClicked(ButtonType buttonType) {
157 if (buttonType.equals(ButtonType.YES)) {
158 articleService.deleteArticle(event.getToDelete());
159
160 // dispatch deleted event
161 ModelWasDeletedEvent<Article> deletedEvent = new ModelWasDeletedEvent<Article>(
162 this, Article.class);
163 deletedEvent.setDeletedModel(event.getToDelete());
164 dispatchEvent(deletedEvent);
165
166 // show notification
167 ShowTrayNotificationEvent notificationEvent = new ShowTrayNotificationEvent(
168 this, translate("articles.deleted.title"),
169 translate("articles.deleted.info",
170 new Object[] { event.getToDelete()
171 .getName() }));
172 notificationEvent.setExecutionType(ExecutionType.ASYNC);
173 dispatchEvent(notificationEvent);
174 }
175
176 }
177 });
178
179 }
180
181 }
182

As you can see the UIArticleService contains the backend ArticleService and two event
handler methods for opening editors in PopUps or confirmation dialogs.

spring-mvp 1.0 Manual

26

UI Services normally have a singleton scope for a Vaadin application. This means each Vaadin application
instance contains only one instance of the UI Service.

In the spring-mvp application all UI Services are configured in one Spring context configuration file.

Example 16. springMvp-demo/src/main/webapp/WEB-INF/spring/services/ui-
services-context.xml

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <beans xmlns="http://www.springframework.org/schema/beans"
 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/
beans/spring-beans.xsd">
 5
 6 <!-- Set the scope of the UI service to singleton so there is only one instance
 7 of the service per Vaadin application -->
 8 <bean id="abstractUiService"
 9 class="de.flexguse.vaadin.addon.springMvp.service.AbstractUIService"
 10 scope="singleton" abstract="true">
 11 <property name="translator" ref="translator" />
 12 <property name="eventDispatcherManager" ref="dispatcherManager" />
 13 </bean>
 14
 15 <bean id="uiShoppingCartService"
 16 class="de.flexguse.vaadin.addon.springMvp.demo.ui.service.UIShoppingCartService"
 17 scope="singleton" parent="abstractUiService" />
 18
 19 <bean id="uiArticlesService"
 20 class="de.flexguse.vaadin.addon.springMvp.demo.ui.service.UIArticlesService"
 21 scope="singleton" parent="abstractUiService" />
 22
 23 <bean id="uiMessageService"
 24 class="de.flexguse.vaadin.addon.springMvp.demo.ui.service.UIMessageService"
 25 scope="singleton" parent="abstractUiService" />
 26
 27 </beans>

6. spring-mvp additional features
spring-mvp provides additional features which makes Vaadin application development easier.

6.1. Application notifications

Vaadin provides the possibility to show different notification types. spring-mvp provides events for all
different notification types. All notification events take the title and the message as constructor arguments.

The event handler methods are implemented in SpringMvpVaadinApplication which listen for
EventScope.SpringMvpApplication and EventScope.AllSpringMvpApplications.

6.1.1. ShowErrorMessageEvent

Dispatching this event shows an Error message.

spring-mvp 1.0 Manual

27

6.1.2. ShowHumanizedMessageEvent

Dispatching this event shows a notification.

6.1.3. ShowTrayNotificationEvent

Dispatching this event shows a Tray notification.

6.1.4. ShowWarningMessageEvent

Dispatching this event shows a warning message.

6.2. Model events
Let's say there is a need to build an application which is aware of Model changes (like the the springMvp-
demo application is).

In this scenario every time a model was added, updated or deleted an event is dispatched. For this three
szenarios generic events were created.

spring-mvp 1.0 Manual

28

All following events have the event scope EventScope.AllSpringMvpApplications and the
execution type ExecutionType.ASYNC. Normally they are dispatched in the UIServices.

6.2.1. ModelWasAddedEvent

Dispatch this event if the Model was newly created and added.

 1 ModelWasAddedEvent<Article> event = new ModelWasAddedEvent<Article>(this, Article.class);
 2 event.setAddedModel(articleForm.getArticle());
 3 dispatchEvent(event);

6.2.2. ModelWasDeletedEvent

Dispatch this event if the Model was deleted.

 1 ModelWasDeletedEvent<Article> deletedEvent = new ModelWasDeletedEvent<Article>(this, Article.class);
 2 deletedEvent.setDeletedModel(event.getToDelete());
 3 dispatchEvent(deletedEvent);

6.2.3. ModelWasUpdatedEvent

Dispatch this event if the Model was updated.

 1 ModelWasUpdatedEvent<Article> event = new ModelWasUpdatedEvent<Article>(this, Article.class);
 2 event.setUpdatedModel(articleForm.getArticle());
 3 dispatchEvent(event);

6.3. Internationalization

Most production ready applications need to be available in several languages. spring-mvp provides a
Translator which helps to get translation from resource bundles utilizing the Spring message source.

spring-mvp 1.0 Manual

29

To use the spring-mvp Translator define a Spring MessageSource in the web application scope.

Example 17. springMvp-demo/src/main/webapp/spring/web-application-
context.xml

 1 <!-- the Spring ResourceBundleSource to access the ResourceBundles containing
 2 the translations for the application -->
 3 <bean id="resourceBundleMessageSource"
 4 class="org.springframework.context.support.ReloadableResourceBundleMessageSource">
 5 <property name="basenames" value="WEB-INF/locale/demo" />
 6 <property name="cacheSeconds" value="60" />
 7 </bean>

spring-mvp 1.0 Manual

30

The Translator itself must be defined in Vaadin application scope because it is possible each Vaadin
application uses another locale.

Example 18. springMvp-demo/src/main/webapp/spring/vaadin-application-
context.xml

 1 <!-- The Translator for this application -->
 2 <bean id="translator"
 3 class="de.flexguse.vaadin.addon.springMvp.locale.impl.TranslatorImpl"
 4 scope="singleton">
 5 <property name="messageSource" ref="resourceBundleMessageSource" />
 6 <property name="localeFromRequest" value="true" />
 7 </bean>

If the Vaadin application uses authentication and user profiles the locale in the Translator can be set
accordingly to the usersettings. In case of the springMvp-demo application there is no authentication and
the locale is taken from the HTTP request.

Make the HTTP request available for TranslatorImpl by adding a listener to web.xml.

Example 19. springMvp-demo/src/main/webapp/web.xml

 1 <!-- needed to set the translators locale from the browser request -->
 2 <listener>
 3 <listener-class>org.springframework.web.context.request.RequestContextListener</listener-class>
 4 </listener>

After having the Translator configured, it can be autowired to each place it is needed (or taken i.e.
from Presenter or UIService).

A missing resource in the resource bundle does not cause an exception but an information which resource
is missing for which locale.

