spring-mvp 1.0 Manual

Christoph Guse <i nf o@ | exguse. de>

Copyright © 2013 flexguse.de

Table of Contents

OO 1 oo [0 1o o PPN 1
1.1. Event Driven APPICAIONS .. .c.uuiiii i e et e e e e e e e e e e e e e et e e e eaneees 2
1.2. Model View Presenter (MVP) ...t e e e e e e 3
A 1= =0 (01 == S 6
G U L= T o o g To o001V o T 6
GRS o T o I wo) 1o [0 1o o 6
3.2. SPring-MVP APPLICALIONuiiieeie e 7
IV o [IS = Y g o1 o P 8
L Y 0 BT E o (o1 8
A0, SPri NGMIPEVENT oot 10
4.2. SpringM/pDi Spat Cher ..o 11
4.3. Di Spat Cher MBNAQET ..oovuiiii e e e e e e e e e e e eanas 14
O YL 0 (= K= (=) o P 16
5. MOAE-ViIieW-PreSenter (MVP) ... e e e e e e et e e e e e e eeens 18
DL IMOED e 18
I Y= ST SPPPRTSPPN 18
R (= < 11 G PP UPPTRPPRPPN 19
B UL SEIVICE ittt ettt eaaas 21
6. SPring-Mmvp additional fEALUIEScvve i 26
6.1. Application NOLITICAHONSccuuiiiii e e e e r e e 26
B.2. MOl BVENES ...ttt aaans 27
6.3, INLEMNBLIONAIZBIIONeieeei e e e 28

1. Introduction

spring-mvp is an Vaadin addon which mainly realizes two general ideas: event driven applications and
the pattern of Model, View and Presenter (mvp). The Spring Framework [http://www.springsource.org/
spring-framework] is used to configure and inject Views and Presenters.

Vaadin Addon Repository https://vaadin.com/directory [https://vaadin.com/directory]

Git Repository https:.//bitbucket.org/flexguse/springmvp-addon [https://bitbucket.org/flexguse/
springmvp-addon]

Issues Tracker https://bitbucket.org/flexguse/springmvp-addon/issues [https://bitbucket.org/flexguse/
springmvp-addon/issues]

Demo application http://springmvp-demo.flexguse.cloudfoundry.com/ [http://springmvp-
demo.flexguse.cloudfoundry.com/]

http://www.springsource.org/spring-framework
http://www.springsource.org/spring-framework
http://www.springsource.org/spring-framework
https://vaadin.com/directory
https://vaadin.com/directory
https://bitbucket.org/flexguse/springmvp-addon
https://bitbucket.org/flexguse/springmvp-addon
https://bitbucket.org/flexguse/springmvp-addon
https://bitbucket.org/flexguse/springmvp-addon/issues
https://bitbucket.org/flexguse/springmvp-addon/issues
https://bitbucket.org/flexguse/springmvp-addon/issues
http://springmvp-demo.flexguse.cloudfoundry.com/
http://springmvp-demo.flexguse.cloudfoundry.com/
http://springmvp-demo.flexguse.cloudfoundry.com/

spring-mvp 1.0 Manual

1.1. Event Driven Applications

The idea of aevent driven application is simple. Somewhere in the application an event is dispatched and
somewhere in the application there is a listener which listens for the event and does something with the
idea.

In Vaadin there already exists the possibility for Ul components to dispatch events.

-

T
- - r \
P ,

i

register |

Vaadin Ul Eventlistener
Component

dispatch Events

/ s
/ . _

Thisisagood approach to listen for events but it gets difficult if the Eventlisteners need to be centralized
and reused or the layout of the application gets complex. Then the EventListener needs detail knowledge
of the Ul and istightly coupled. No chance to change the Ul without changing the EventListener.

Eventlistener

Ul Component }9@5\9/
Ul Component ﬁ/ \ /l

Vaadin Ul
Component

In spring-mvp thereistheidea of aDi spat cher Manager which is available all over the application.
A Ul component registers itself als EventListener in the Di spat cher Manager and there is
absolutely no need for th EventListener how it is used in the Ul. Events are dispatched using the
Di spat cher Manager .

spring-mvp 1.0 Manual

Dispatcher
Manager

Vaadin Ul Eventlistener
Component

1.2. Model View Presenter (MVP)

Developing Applications in Vaadin is easy. Only some Ul components needs to be instantiated and
combined, some listeners need to be registered and the small application is complete. This procedure leads
to quick results but the resulting code tends to be long and difficult to maintain. An example taken from

the Vaadin sampler.

1
2 package com.vaadin.demo.sampl er.features.trees;

3

4 import java.util.Collection;

5

6 import com.vaadin.data.ltem;

7 import com.vaadin.data.Property;

8 import com.vaadin.data.Property.V alueChangeEvent;
9 import com.vaadin.demo.sampler.ExampleUtil;

10 import com.vaadin.event.Action;

11 import com.vaadin.ui.AbstractSel ect;

12 import com.vaadin.ui.Alignment;

13 import com.vaadin.ui.Button;

14 import com.vaadin.ui.Button.ClickEvent;

15 import com.vaadin.ui.Horizontal Layout;

16 import com.vaadin.ui.TextField;

17 import com.vaadin.ui.Tree;

18

19 @SuppressWarnings("serial™)

20 public class TreeSingleSel ectExample extends Horizontal L ayout implements
21 Property.ValueChangel istener, Button.ClickListener, Action.Handler {

spring-mvp 1.0 Manual

22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

/I Actions for the context menu

private stetic final Action ACTION_ADD = new Action("Add child item");
private static final Action ACTION_DELETE = new Action("Delete");
private static final Action[] ACTIONS = new Action[] { ACTION_ADD,

ACTION_DELETE};

private Treetree;

Horizontal Layout editBar;
private TextField editor;
private Button change;

public TreeSingleSelectExample() {

}

setSpacing(true);

/I Create the Tree,a dd to layout
tree = new Tree("Hardware |nventory™);
addComponent(tree);

/I Contents from a (prefilled example) hierarchical container:
tree.setContai nerDataSource(Exampl eUtil.getHardwareContainer());

/I Add V& uechangelistener and Actionhandler
tree.addL istener(this);

/I Add actions (context menu)
tree.addActionHandler(this);

/I Cause valueChange immediately when the user selects
tree.setlmmediate(true);

/I Set tree to show the 'name’ property as caption for items
tree.setltemCaptionPropertyl d(ExampleUtil.hw_PROPERTY _NAME);
tree.setltemCaptionM ode(AbstractSelect.ITEM_CAPTION_MODE_PROPERTY);

/I Expand whole tree
for (Object id : tree.rootltemlds()) {
tree.expandltemsRecursively(id);

}

/I Create the 'editor bar' (textfield and button in a horizontallayout)
editBar = new Horizontal Layout();

editBar.setMargin(false, false, false, true);
editBar.setEnabled(false);

addComponent(editBar);

Il textfield

editor = new TextField("Item name");

editor.setlmmediate(true);

editBar.addComponent(editor);

1/ apply-button

change = new Button("Apply", this, "buttonClick");
editBar.addComponent(change);
editBar.setComponentAlignment(change, Alignment.BOTTOM_LEFT);

public void valueChange(V alueChangeEvent event) {

if (event.getProperty().getVaue() != null) {
/I 1f something is selected from the tree, get its 'name' and
/l'insert it into the textfield

spring-mvp 1.0 Manual

82 editor.setValue(tree.getltem(event.getProperty().getVa ue())

83 .getltemProperty(ExampleUtil.hw_PROPERTY_NAME));
84 editor.requestRepaint();

85 editBar.setEnabled(true);

86 } else{

87 editor.setVaue("");

88 editBar.setEnabled(fal se);

89 }

0 }

91

92 public void buttonClick(ClickEvent event) {

93 /I'1f the edited value contains something, set it to be the item's new
94 [/ 'name' property

95 if (‘editor.getValue().equals(")) {

96 Item item = tree.getltem(tree.getVaue());

97 Property name = item.getltemProperty(ExampleUtil.hw_PROPERTY _NAME);
98 name.setV alue(editor.getVaue());

99 }

100 }

101

102 /*

103 * Returnsthe set of available actions

104 =/

105 public Action[] getActions(Object target, Object sender) {

106 return ACTIONS;

107 }

108

109 /*

110 * Handle actions

111 */

112 public void handleAction(Action action, Object sender, Object target) {
113 if (action== ACTION_ADD) {

114 /I Allow children for the target item, and expand it

115 tree.setChildrenAllowed(target, true);

116 tree.expandltem(target);

117

118 /I Create new item, set parent, disallow children (= leaf node)
119 Object itemld = tree.addItem();

120 tree.setParent(itemld, target);

121 tree.setChildrenAllowed(itemld, false);

122

123 /I Set the name for thisitem (we use it as item caption)

124 Item item = tree.getltem(iteml d);

125 Property name = item.getltemProperty(ExampleUtil.hw_PROPERTY_NAME);
126 name.setVaue("New Item");

127

128 } elseif (action == ACTION_DELETE) {

129 Object parent = tree.getParent(target);

130 tree.removel tem(target);

131 /'1f the deleted object's parent has no more children, set its
132 /I childrenallowed property to false (= leaf node)

133 if (parent !=null) {

134 Caollection<?> children = tree.getChildren(parent);

135 if (children !=null && children.isEmpty()) {

136 tree.setChildrenAllowed(parent, false);

137 }

138 }

139 }

140 }

141}

spring-mvp 1.0 Manual

142

Maybe this example is alittle bit long, but it it demonstrates that pure V aadin code tends to be Spaghetti-
Code which is hard to maintain, especially if the maintainer has not created the code.

The spring-mvp ideatries to decouple code and to create a structure so it is clear where to find the layout
and the logic of a application:

» Themodel (known as Bean, VaueObject(VO) etc.) contains the data to show in the application.
e Theview contains only the layout.
» The presenter contains the logic for the layout.

With this approach the code is more structured, each part is cleary arranged.

Example 1. spring-mvp

/'.-.--- \\
/ Custom Ul Component \
g ™, e N ™
Model View Presenter
, /".I | Vi I\\ 4
. L o - /';

2. Prerequisites

spring-mvp is based on Vaadin 6.x, Java 1.6, Spring 3.1.2 and dellroad-stuff-vaadin 1.0.594. This addon
works with Java 1.7, but there is currently no support for Vaadin 7 available.

3. Using spring-mvp
3.1. Spring configuration

First of al the basis, Spring, needs to be configured and enabled for the Vaadin web application. This
configuration is not spring-mvp specific but acommon Spring web application configuration.

Thereareseveral configurations necessary to get spring-mvp up and running. Spring can al so be configured
using Annotations, which is documented in the Spring documentation. If Maven is used (which is highly
recommended), all needed dependencies are provided by spring-mvp.

All configuration examplesare taken from the demo application. Inthe Demo-Application Springismainly
configured using XML configuration files.

Spring can also be configured using Annotations, which is documented in the Spring documentation.

spring-mvp 1.0 Manual

3.1.1. WEB-INF/web.xml

Set the location of the Spring configuration XML file.

1 <context-param>

2 <param-name>contextConfigL ocation</param-name>

3 <param-value>/WEB-INF/spring/web-application-context.xml</param-value>
4 </context-param>

The path to the web application context configuration file can of course be customized.

Add the necessary listeners.

1 <listener>

2 <listener-class>org.springframework.web.context.ContextL oaderListener</listener-class>

3 </listener>

4 <I-- needed to set the translators |ocale from the browser request -->

5 <listener>

6 <listener-class>org.springframework.web.context.request. RequestContextL i stener</listener-class>
7 <llistener>

3.1.2. Spring application context

Defineall Objects(Services, Resource-Bundlesetc.) inthiscontext if they should beavailableinall Vaadin
application instances.

Example 2. WEB-INF/spring/web-application-context.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <beans xmlns="http://www.springframework.org/schema/beans"

3 xmins:xsi="http://www.w3.0rg/2001/X ML Schema-instance"

4 xsi:schemal ocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/
beans/spring-beans.xsd">

5

6 </beans>

7

3.2. spring-mvp Application

To use gpring-mvp in Vaadin applications the Vaadin application needs to extend
Spri ngM/pVaadi nAppl i cati on.

Example 3. src/main/javal/de/flexguse/vaadin/addon/springM vp/
applicationAddonDemoApplication.java

1 public class AddonDemoA pplication extends SpringMvpV aadinApplication...{}

Then the application needs to be known by Spring.

Example 4. WEB-I NF/spring/vaadin-application-context.xml

1 <bean id="demoApplication"

2 class="de.flexguse.vaadin.addon.springMvp.demo.AddonDemoA pplication"
3 factory-method="get">

4 </bean>

spring-mvp 1.0 Manual

Warning

Do not forget to set the factory-method, otherwise the Autowiring won't work properly.

And the last necessary configuration is to configure Spring to look for annotations.

Example 5. WEB-INF/spring/vaadin-application-context.xml

1 <!-- enable configuration by annotation like @Autowired or @HandleSpringMvpEvent -->
2 <context:annotation-config />

3.3. Vaadin Server push

While dispatching spring-mvp events Vaadin applications are changed serverside. Without a Server push
mechanism the changesin the Vaadin applications are not reported to the Client browsers.

It isstrongly recommended to use a Server push mechanism to ensure the correct behavior of spring-mvp.
In the springMvp demo application dontpush-addon-ozonelayer [https://vaadin.com/directory#addon/
dontpush-ozonelayer:vaadin] was used wich performed quite well.

Currently thereisno Server push availablein Vaadin 7, that's the reason why spring-mvp does not support
Vaadin 7 but Vaadin 6.x.

3.3.1. No Server push example

A Vaadin application was created in which a User with the role Administrator is able to send a
notification messageto all Vaadin application instances. Using spring-mvp thisis not ahard task using the
Di spat cher Manger . The DispatcherManager callsthe event listener methods of all Vaadin application
instances and the application the Administrator uses show the notification message.

All other applications do not show the notification immediately. The users haveto click somewhere so the
browser part of the Vaadin application gets awave of the notification message.

4. Event Dispatching

Eventdispatching is one of the key features of spring-mvp. There are a couple of objects involved in
dispatching evenents, the mostly used are Spr i ngM/pDi spat cher andtheDi spat cher Manager .

Dispatching an Event issimple. First of al create an Event class that extends .

https://vaadin.com/directory#addon/dontpush-ozonelayer:vaadin
https://vaadin.com/directory#addon/dontpush-ozonelayer:vaadin
https://vaadin.com/directory#addon/dontpush-ozonelayer:vaadin

spring-mvp 1.0 Manual

Example 6. de.flexguse.vaadin.addon.springM vp.demo.ui.events.ShowArticlesViewEvent

1 package de.flexguse.vaadin.addon.springMvp.demo.ui .events;

2

3 import de.flexguse.vaadin.addon.springMvp.events.SpringM vpEvent;
4

5 /* *

6 * Digpatch this event to show the Article View.

7 *

8 * @author Christoph Guse, info@flexguse.de

9 *

10 */

11 public class ShowArticlesViewEvent extends SpringMvpEvent {

12

13 private static final long serialVersionUID = -7682300622168995827L ;
14

15 public ShowArticlesViewEvent(Object eventSource) {

16 super(eventSource, null);

17 }

18

19}

After that create a EventListener which listens for the event.

Example 7. de.flexguse.vaadin.addon.springM vp.demo.AddonDemoA pplicationPr esenter

1 package de.flexguse.vaadin.addon.springMvp.demo;

2

3.

4 [**

5 * This Presenter contains logic for the { @link AddonDemoA pplication} .
6 *

7 * @author Christoph Guse, info@flexguse.de

8 *

9 */

10 public class AddonDemoA pplicationPresenter extends

11 AbstractPresenter<AddonDemoA pplication> {

12

13 @Autowired

14 private ApplicationContext springContext;

15

16 ...

17 @HandleSpringMvpEvent

18 public void handleShowArticlesView(ShowArticlesViewEvent event) {
19 getView().setView(springContext.getBean(ArticlesM anagement.class));
20 }

21}

22

The EventListener can be any object. Just implement a method which has your Spri ngM/pEvent as
attribute and annotate this method with @Handl eSpri ngM/pEvent .

And then just dispatch the ShowAr t i cl esVi ewEvent somewherein your application.

spring-mvp 1.0 Manual

Example 8. de.flexguse.vaadin.addon.springM vp.demo.AddonDemoApplication

1 package de.flexguse.vaadin.addon.springM vp.demo;

2

3 /**

4 * The Application's "main" class.

5 *

6 * @author Christoph Guse, info@flexguse.de

7 *

8 @SuppressWarnings(*serial™)

9 public class AddonDemoA pplication extends SpringMvpV aadinApplication implements
10 View<AddonDemoA pplicationPresenter> {

11

12 @Override

13 protected void initSpringA pplication(ConfigurableWebA pplicationContext arg0) {
14

5 ..

16 presenter.dispatchEvent(new ShowShoppingCartViewEvent(this));

17

18 }

19 ...

20}

spring-mvp is designed to have a SpringMvpDispatcher in several scopes:
» Web Application scope: only one instance for all VVaadin application instances.

 Vaadin application scope: eventsdispatched in thisscope are only sent to the current V aadin application.
Eventdispatching to other than the current VVaadin application instance is not possible.

» Custom scope: a SpringMvpDispatcher can be instantiated in a custom component and only lives as
long the custom component lives

The different Dispatcher scopes can be achieved by configuring SpringMvpDispatcher in different Spring
context configuration files.

A SpringMvpDispatcher implementation is akind of Map in which the Key is the SpringMvpEvent class
and the valueisalist of event listeners.

4.1. Spri ngM/pEvent

All custom events handled by spring-mvp must extend Spr i ngM/pEvent .

10

spring-mvp 1.0 Manual

<<Java Class==
(&4 SpringMvpEvent

de. flexguse. vasdin, sddon. springhvp.eveants

o zource: WeakReference=0Object=
o executionType: ExecutionType

o eventScope: String

o genericType: Class<¥>

{fﬁ-pringm vpEvent{Object Clazzs<?=)

@ getExecutionTypel) ExecutionType

@ setExecutionTypelExecutionType) void
@ getSource().Object

@ getEventScope(): String

@ setEventScope(String) void

@ getGenericType():.Clags<7>

Theabstract classSpr i ngM/pEvent contains someinformation which isessential for spring-mvp event
dispatching.

4.1.1. ExecutionType

spring-mvp providestwo execution types of event handling. Setting Execut i onType. SYNC meansthe
event listening methods are executed immediately and the application part which dispatched the event
waits until all listening methods were called.

In case of long running listening methods this behavior is not wanted. Set Execut i onType. ASYNC
means the listening methods are executed in a background task and the application isimmediately ready
to proceed.

4.1.2. EventScope

Setting the EventScope decides in the Di spat cher Manager which Spri ngM/pDi spat cher is
used for event listener method execution.

By default in spring-mvp there are two EventScopes defined:
Event Scope. Spri ngM/pAppl i cati on and Event Scope. Al | Spri ngM/pAppl i cati ons.
The predefined EventScopes can be easily extended by setting own EventScopes.

4.1.3. GenericType

spring-mvp allows the creation and dispatching of generic SpringM/pEvents (see
Model WasAddedEvent <T>). At runtimein Javait is not possible to get the generic information which
isessential for correct event listener method registration. Therefore the generic type information must be
set as attribute in the Spri ngM/pEvent class.

4.2. Spri ngM/pD spat cher

The Spri ngM/pDi spat cher provides several methods to register/unregister EventListeners and to
dispatch events.

11

spring-mvp 1.0 Manual

<<Java Interface==

&9 SpringMvpDispatcher

de. flexguse. vaadin. sddon. springbd v p.dispatcher

@ registerListener{Object):void

@ unregisterListener/Object)void

@ unregisterListener{Object Method, Class<SpringMvpEvent=):void
@ unregisterListener{Object Method, SpringMvpEvent)void

@ dispatchEvent(SpringMvpEvent):void

@ registerListener{Object, Method, Class<SpringMvpEvent=):void

@ registerListener{Object, Method, SpringMvpEvent):void

@ registerListener(Object, SpringMvpEvent, MethodCallln fo}:veid

@ registerListenerMethods{0bject EventMethodMap) void

@ close()void

-------------.[:':_p.

=<=]ava ;:Ia oEE
(% SpringMvpDispatcherimpl

de. flexgguse. vasdin. addon. springb v p.dispatchear. impl

Please have alook at the Javadoc to get an idea what the methods do in detail.
Itisup to the user to usethe Spri ngM/pDi spat cher directly or to usethe Di spat cher Manager .

For convenienceit is advocated to use the Di spat cher Manager .

4.2.1. Configuration

TheSpri ngM/pDi spat cher isusedfor dispatching event. To dispatch eventsto all Vaadin application
instances (from one browser to another) the Spri ngMvpDi spat cher needs to be configured in the
Spring context for the complete web application. In the demo application this is WEB- | NF/ spri ng/

web- appl i cati on-context.xm in Spring singleton scope.

Example 9. WEB-INF/spring/web-application-context.xml

<!-- The dispatchers and dispatcherManager used for this vaadin application -->

<bean id="overal| SpringMvpDi spatcher"
class="de.flexguse.vaadin.addon.springMvp.dispatcher.impl. SpringM vpDispatcherl mpl "
destroy-method="close" scope="singleton" parent="abstractDispatcher">
<constructor-arg name="syncTaskExecutor" ref="commonSyncTaskExecutor" />
<constructor-arg name="asyncTaskExecutor" ref="commonAsyncTaskExecutor" />
</bean>

~No b~ wNE

12

spring-mvp 1.0 Manual

4.2.2. Abst r act Event Di spat cher

The AbstractEventDispatcher isthe base classfor all SpringMvpDispatcher implementations. Beside some
useful methods it contains the Spr i ngmvpHandl er Ut i | which is used to do the EventListener class
introspection. Define the AbstractEventDispatcher and SpringMvpHandlerUtil only once in your Spring
context. In the demo application thisisdone in

Example 10. springM vp-addon/sr c/main/r esour ces/springM vp-context.xml

1 <!-- The Utility which examines objects for annotations -->
2 <bean id="springMvpUtil" class="de.flexguse.vaadin.addon.springMvp.util.SpringMvpHandlerUtil*
3 scope="singleton"/>

which is imported into springM/p-deno/src/ mai n/ webapp/ VEB- | NF/ spri ng/ web-
appl i cation-context.xm

4.2.3. Event Handl er sCal | er

An Event Handl er sCal | er is a spring-mvp technical class manages the method calling for one
Spri ngM/pEvent . Thereis no need to use Event Handl er Cal | er directly, but it must be defined
in the Spring configuration with Spring scope "prototype".

Example 11. springM vp-addon/sr c/main/r esour ces/springM vp-context.xml

1 <bean class="de.flexguse.vaadin.addon.springMvp.dispatcher.impl .EventHandl ersCallerl mpl "
2 destroy-method="cleanUp" scope="prototype" parent="abstractDispatcher"/>

4.2.4. TaskExecutors

In spring-mvp Events can be dispatched synchronously and asynchronously. If you know the Event
causes a long running task, dispatch it asynchronously. The execution of the Events is done using the
Spring TaskExecut or abstraction (see Spring documentation). [http://static.springsource.org/spring/
docs/3.1.x/spring-framework-reference/html/scheduling.html#scheduling-task-executor]

A SpringMWpDi spatcher aways has two TaskExecutors: syncTaskExecutor and
asyncTaskExecutor. Configure the TaskExecut or for your needs. For the demo application this was
donein

Example 12. springM pv-demo/sr c/main/webapp/W EB-I NF/spring/vaadin-
application-context.xml

1 <!-- The Spring Task executors -->

2 <bean id="syncTaskExecutor" class="org.springframework.core.task.SyncTaskExecutor" />
3

4 <bean id="asyncTaskExecutor"

5 class="org.springframework.scheduling.concurrent. ThreadPool TaskExecutor">

6 <property name="corePoolSize" value="5" />

7 <property name="maxPoolSize" value="10" />

8 <property name="queueCapacity" value="25" />

9 </bean>

13

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/scheduling.html#scheduling-task-executor
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/scheduling.html#scheduling-task-executor
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/scheduling.html#scheduling-task-executor

spring-mvp 1.0 Manual

4.2.5. Spri ngM/pHandl er Ut i |

The Spri ngM/pHandl er Ut i | does the Eventhandler introspection to get the methods which need
to be registered in the EventHandlers. In future versions there are plans to implement caching in the
Spri ngM/pHandl er Uti | soitisagood ideato only have one instance per VM.

In the demo application the configuration of Spr i ngM/pHandl er isdonein

Example 13. springM vp-addon/sr c/main/r esour ces/springM vp-context.xml

1 <!-- The Utility which examines objects for annotations -->

2 <bean id="springMvpUtil" class="de.flexguse.vaadin.addon.springMvp.util.SpringMvpHandlerUtil "
3 scope="singleton"/>

4.3. Di spat cher Manager

The Di spat cher Manager isawrapper for multiple Spri ngM/pDi spat cher which allocates the
correct dispatcher by the EventScope. In the current Implementation there are convenience method to have
Spri ngM/pDi spat cher for two EventScopes, but you are free to register more.

e
rd

SpringMvp
allApplicationScoRe Dispatcher
Dispatcher N J
Manager P
APblication gy,
A SpringMvp
Dispatcher
=
@
] Y /
w \ 4
w
8]
=
[&]
T
2
o
Ul
Component

Using the Di spat cher Manager issimple. Inject it into your classes and dispatch an Event.

14

spring-mvp 1.0 Manual

1 @Autowired

2 private DispatcherManager dispatcherManager;

3.

4 public void dispatchEvent(){

5 dispatcherManager.dispatcheEvent(new SpringMvpEvent());
6}

Which Spri ngM/pDi spat cher isused is set by the EventScope set in the Spri ngM/pEvent . By
default the EventScope Event Scope. Spri ngM/pAppl i cat i on isset, the event isdispatched in the
current Vaadin application.

If the event shall be dispatched to all Vaadin applications, set the EventScope to
Event Scope. Al | Spri ngM/pAppl i cati ons.

<=]ava Interface==
&9 DispatcherManager

de_flexguss. vasdin. sddon. springhdvp.dispatcher

@ setipplicationDispatcher(SpringMyplispatcher):void

@ setallspplicationsDizpatcher(SpringMyvplispatcher):void
@ addDispatcher(SpringMvplispatcher, String j:void

@ removeDispatcher(Stringyvoid

@ getlizpatcher(String). SpringMvplizspatcher

@ dispatchEvent(SpringMvpEvent):void

@ registerListener/Object)void

A

<zJava Clazs==
(< DispatcherManagerimpl

de. flexguse. v aadin. addon. s pringh v p. dispatcher.imipl

4.3.1. D spat cher Manager configuration

Ensure only one instance of Di spat cher Manager exists once per Vaadin application. In the demo
application it is defined in

15

spring-mvp 1.0 Manual

Example 14. springM vp-demo/sr c/main/webapp/W EB-I NF/spring/vaadin-
application-context.xml

1 <bean id="dispatcherManager"

2 class="de.flexguse.vaadin.addon.springMvp.dispatcher.impl.DispatcherM anagerlmpl ">
3 <property name="applicationDispatcher" ref="springMvpDispatcher" />

4 <property name="all ApplicationsDispatcher" ref="overall SpringMvpDispatcher" />

5 <property name="springMvpHandlerUtil" ref="springMvpUtil" />

6 </bean>

4.4. Event Registration

Event registration can be done manualy or automatically. For manual registration inject the
Spri ngM/pDi spat cher orthe Di spat cher Manaegr and register amethod for an event.

In some cases this can be useful, especiadly if the Vaadin methods

\ attach() ‘

and

\ detach() ‘

are overwritten in which methods are registered/unregistered at ainjected Spri ngM/pDi spat cher .

But for convenience it is much better to use annotations.
4.4.1. Spri ngM/pBeanPost Processor

To get the spring-mvp annotations @andl eSpri ngM/pEvent and @Handl eSpri ngM/pEvent s
running the Spri ngM/pBeanPost Processor must be registered in the Spring context so each

Spring controlled bean is examined for the spring-mvp annotations and eventually registerd in the
Di spat cher Manager .

In the demo application the Spr i ngM/pBeanPost Processor isdefinedin

16

spring-mvp 1.0 Manual

Example 15. springM vp-demo/sr c/main/webapp/W EB-I NF/spring/vaadin-
application-context.xml

1 <!-- The Spring postprocessor which handles the annotated beans -->

2 <bean class="de.flexguse.vaadin.addon.springMvp.util.SpringM vpBeanPostProcessor">
3 <constructor-arg name="dispatcherManager" ref="dispatcherManager" />

4 </bean>

Each time Spring instantiates a new bean the bean is searched for annotated methods and if that methods
arefound, the bean is registered as EventListener inthe Di spat cher Manager .

Using the Spri ngM/pBeanPost Pr ocessor means ony Spring instantiated beans are searched for
annotated methods. Creating beans containing annotated methods using

new EventListener()

in your code means NOT the bean is automatically registered at the Spri ngM/pDi spat cher .

As described before unregistering of EventListeners can be done manualy. In case of using
Spri ngM/pBeanPost Pr ocessor and annotation driven event registration no unregistration is done.
This means no memory lock because internally the Spri ngM/pDi spat cher suse WeakReferences so
the EventListener can be garbage collected even if it till registered in a dispatcher.

4.4.2. @Handl eSpri ngM/pEvent

This annotation is used to register amethod for a single event. With no explicitly given event Scopes,
themethodisregisteredin Event Scope. Spri ngM/pAppl i cat i on which meansthe methodisonly
executed if the event was dispatched from the current Vaadin application.

1 @HandleSpringMvpEvent
2 public void handleOpenShoppingCartEditorEvent(final OpenM odel EditorEvent<ShoppingCart> event){ ...}

If the method needs to listen for the event in several scopes, set the event Scopes explicitely.

1 @HandleSpringMvpEvent(eventScopes = { EventScope.All SpringMvpA pplications,
EventScope.SpringMvpApplication })

2 public void handleArticleWasAdded(Model WasAddedEvent<Article> event) {

3 eventlList.addEvent(event);

4}

4.4.3. @Handl eSpri ngM/pEvent s

In some cases a EventListener method shall be caled for several events. In this case the
method argument must be of type Spri ngM/pEvent and the method must be annotated with
@Handl eSpri ngM/pEvents. If no Event Scope is given, the default listening scope is
Event Scope. Spri ngM/pAppl i cati on.

1 @HandleSpringMvpEvents(value = {

2 ShowErrorMessageEvent.class, ShowHumanizedM essageEvent.class,
3 ShowTrayNotificationEvent.class, ShowWarningM essageEvent.class,
4 OpenMessageEditorEvent.class, ShowArticlesViewEvent.class,

5 ShowShoppingCartViewEvent.class })

6 public void handleSpringMvpEvent(SpringMvpEvent event) {

7

8 eventlList.addEvent(event);

9}

17

spring-mvp 1.0 Manual

The method in this exampleis caled if any of the given events is dispatched.

Additionally the listening Event Scope can be given.

8
9 eventList.addEvent(event);
10 }

1 @HandleSpringMvpEvents(eventScopes = { EventScope.AllSpringMvpA pplications,
2 EventScope.SpringMvpApplication }, value = {
3 ShowErrorMessageEvent.class, ShowHumanizedM essageEvent.class,
4 ShowTrayNatificationEvent.class, ShowWarningM essageEvent.class,
5 OpenMessageEditorEvent.class, ShowArticlesViewEvent.class,
6 ShowShoppingCartViewEvent.class})

7 public void handleSpringM vpEvent(SpringMvpEvent event) {

5. Model-View-Presenter (MVP)

The MV P part in spring-mvp is nothing which must beimplemented but it isageneral ideahow to structure
acomplex application codebase so it iseasy to find layout or functionality for maintenance. The previously

shown MV P figure needs some extention.

/ Custom Ul Component

~ p -
B {

Model View

Presenter

5.1. Model

Ul Service

The Model isaVaue Object (VO) or just Bean. VOs and Beans are objects which hold business specific
dataand mostly nologic. Inthedemo applicationtheseVOsareArt i cl e, Mbdel and Shoppi ngCart .

In spring-mvp Models do not need to extend or implement anything.

5.2. View

In spring-mvp the View isaVaadin Ul component. A View can be the complete layout of an application
or maybe a PopUp window or a custom Table component.

InaView there should be only the layout and normally no logic. Thelogic isimplemented in the Presenter
which is part of each View. The setter for the Presenter is the only mandatory method in the View.

<=lava Interface:==
68 View=T>

de. flexguse. vaadin. addon. springv p. view

@ setPresenter(Tyvoid

18

spring-mvp 1.0 Manual

Anexamplefor aView isAddonDenpAppl i cati on:

1 public class AddonDemoA pplication extends SpringMvpV aadinA pplication implements
2 View<AddonDemoA pplicationPresenter> {

3.

4

5 /**

6 * If you want to autowire the Presenter, add @A utowired to the setter so
7 * theregistration of the View is done in this method.

8 *<p>

9 * Normally it would be agood idea to configure the presenter in the Spring
10 * xml configuration, this does not work for the Application.

11 * </p>

12 */

13 @Autowired

14 public void setPresenter(AddonDemoA pplicationPresenter presenter) {
15 this.presenter = presenter;

16 presenter.setView(this);

17 }

18 ...

19}

While setting the Presenter in the View the View needs to be set in the Presenter.

To use Spring dependency injection all Views need to be configured as Spring beans. It is essentia to
set the Spring scope "prototype” so every time a new instance of the View is created. If another scopeis
set, like "singleton” for reusing View components, the View components are not properly shown in the

Vaadin application.

1 <bean id="articlesM anagement"

2 class="de.flexguse.vaadin.addon.springMvp.demo.ui.component.articles.ArticlesM anagement"
3 scope="prototype">

4 <property name="presenter" ref="articlesManagementPresenter" />

5 <property name="trandlationPrefix" value="articles" />

6 </bean>

5.3. Presenter

The Presenter contains all the logic for Views. Registering Vaadin event listeners on Vaadin components,
implementing spring-mvp Event listener methods and other logic can be bulky and should not be mixed
with the layout and should be clearly separated into the Presenter.

In spring-mvp there is an Abst r act Pr esent er which contains some logic needed by all Presenters.
All Presentersin a spring-mvp application must extend Abst r act Pr esent er .

19

spring-mvp 1.0 Manual

<<Java Interface:==

€9 Presenter<T=

de. flexguse. vasdin, sddon. springMv p. pressnter

@ setView (T} void

@ getView ()

@ =setTranslator({Tranglator) void

@ getTranslator(}. Translator

@ translateString): String

@ translateString, Object[]). String

@ setbDizpatcherManageriDispatcherManager):void
@ dizpatchEvent(SpringMvpEvent):void

<<Java Class»==

(4 AbstractPresenter<T>

de. flexguse. vasdin. sddon. springh v p. pressnter

The Presenter is a good place to implement View specific Event listener methods like in the
AddonDenpAppl i cati onPresenter.

1 /**

2 * This Presenter contains logic for the { @link AddonDemoA pplication} .
3 *

4 * @author Christoph Guse, info@flexguse.de

5 *

6 */

7 public class AddonDemoA pplicationPresenter extends

8 AbstractPresenter<AddonDemoA pplication> {

9

10 @Autowired

11 private ApplicationContext springContext;

12

13 @HandleSpringMvpEvent

14 public void handleShowShoppingCatView(ShowShoppingCartViewEvent event) {
15 getView().setView(springContext.getBean(ShoppingCartM anagement.class));
16 }

17

18 @HandleSpringMvpEvent

19 public void handleShowArticlesView(ShowArticlesViewEvent event) {
20 getView().setView(springContext.getBean(ArticlesM anagement.class));
21}

22}

20

spring-mvp 1.0 Manual

This example is quite short but shows how the Presenter communicates with the View: using the
get Vi ew() method.

A more complex Presenter is Model Managenent Pr esent er which is too long to show here but it
demonstrates how the View logic can grow enormously.

Like the Views Presenters needs to be configured in Spring with scope "prototype". This ensures each
View instance has it's own Presenter instance.

1 <bean id="articlesManagementPresenter"

2 class="de.flexguse.vaadin.addon.springMvp.demo.ui.component.articles.ArticlesM anagementPresenter"
3 scope="prototype" parent="abstractPresenter">

4 <property name="model Service" ref="uiArticlesService" />

5 </bean>

5.4. Ul Service

The Ul Serviceisthe place where the backend services (for handling the Models) meet the Ul. Some could
say this layer is not necessary but a Ul Service gives us the possibility to do custom exception handling
and the Ul Serviceisavery good place to implement event listener methods.

All Ul Servicesin a spring-mvp application should extend Abst r act Ul Ser vi ce.

21

spring-mvp 1.0 Manual

<<Java Interface==
8 UiService

de. flexguse. vaadin. sddon. springhd v p.sarvice

@ sethpplication{&pplication }:void
@ getMainWindow () Window

@ getTranslator() Translator

@ tranzlate(String):String

@ translate(String, Object[]): String

i

<=]ava Class=»
(= AbstractUlService

de. flexguse. vasdin. sddon. springh v p.service

@ AbstractUlService()
@ =etEventDispatcherManageriDispatcheriManager):void

@ =etapplicationiApplication) void

@ getMainWindow () Window

@ dizpatchEvent(SpringMvpEvent): void
@ sefTranslatoriTranslator) void

@ gefTranslator() Translator

@ translate(String). string

@ translate(String, Object]]y:String

In the spring-mvp demo application Models are always edited in PopUps. Ul Services are the perfect
central place to implement the event listening methods which open the Editor PopUps. Ul Services
normally have a Spring singleton scope, they exist al the time the VVaadin application exist and are always
ready to open the editor whereas Views and Presenters may have another Spring scope and do not exist
thewhole time.

Anexamplefor aUl ServiceisUl Arti cl esServi ce.

1 /**

2 *

3 */

4 package de.flexguse.vaadin.addon.springM vp.demo.ui.service;

5

6 import java.util.List;

7

8 import org.springframework.beans.factory.annotation.Autowired;

22

spring-mvp 1.0 Manual

9

10 import com.vaadin.data.Vaidator.InvalidV alueException;

11

12 import de.flexguse.vaadin.addon.springM vp.annotations.HandleSpringM vpEvent;
13 import de.flexguse.vaadin.addon.springMvp.demo.backend.model . Article;

14 import de.flexguse.vaadin.addon.springMvp.demo.backend.service. ArticleService;
15 import de.flexguse.vaadin.addon.springM vp.demo.ui.component.articles.ArticleForm;
16 import de.flexguse.vaadin.addon.springMvp.demao.ui.component.model .M odel Formlinterceptor;
17 import de.flexguse.vaadin.addon.springMvp.demao.ui.events.DeleteM odel Event;

18 import de.flexguse.vaadin.addon.springMvp.demao.ui.events.OpenM odel EditorEvent;
19 import de.flexguse.vaadin.addon.springMvp.events.SpringM vpEvent. ExecutionType;
20 import de.flexguse.vaadin.addon.springM vp.events.messages.Show TrayNotificationEvent;
21 import de.flexguse.vaadin.addon.springMvp.events.model .M odel WasA ddedEvent;
22 import de.flexguse.vaadin.addon.springMvp.events.model .M odel WasDel etedEvent;
23 import de.flexguse.vaadin.addon.springMvp.events.model .M odel WasUpdatedEvent;
24 import de.flexguse.vaadin.addon.springMvp.service. AbstractUl Service;

25 import de.flexguse.vaadin.addon.springMvp.service.Ul Service;

26 import de.steinwedel .vaadin.M essageBox;

27 import de.steinwedel .vaadin.M essageBox.ButtonType;

28

29 [**

30 * ThisArticleService is designed to be used directly in the Ul components.

31 *

32 * @author Christoph Guse, info@flexguse.de

33 *

34 */

35 public class Ul ArticlesService extends AbstractUI Service implements Ul Service,

36 UiModelService<Article> {

37

38 @Autowired

39 private ArticleService articleService;

40

41 @Autowired

42 private ArticleForm articleForm;

43

44 /**

45 * Thismethod gets all Articles from the backend persistence.

46 *

47 * @return

48 */

49 public List<Article> getAlIModels() {

50

51 return articleService.getAllActiveArticles();

52

53 }

54

55 [*x*

56 * This method listens for an { @link OpenModel EditorEvent} and opens an

57 * article editor containing the { @link Article} given by the event.

58 *

59 * @param event

60 */

61 @SuppressWarnings("static-access")

62 @HandleSpringMvpEvent

63 public void handleOpenArticleEditorEvent(

64 fina OpenModel EditorEvent<Article> event) {

65

66 articleForm.setArticle(event.getModel ());

67

68 String editorTitle = trandlate(" articles.editor.title.new");

23

spring-mvp 1.0 Manual

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

if (‘event.isNewModel()) {
editorTitle = trand ate("articles.editor.title.edit");

}

final MessageBox messageBox = new MessageBox(getMainWindow(), "45%",
"450px", editorTitle, MessageBox.|con.NONE, articleForm,
MessageBox.BUTTON_DEFAULT_ALIGNMENT,
new MessageBox.ButtonConfig(ButtonType. CANCEL,

trandate("cancel")), new MessageBox.ButtonConfig(
ButtonType.SAVE, trandate("save")));

final Model Forminterceptor interceptor = new Model Forminterceptor();

messageBox.VISIBILITY_INTERCEPTOR = interceptor;

messageBox.show(true, new MessageBox.EventListener() {

private static final long serialVersionUID = 2948376877660010667L ;

@Override
public void buttonClicked(ButtonType buttonType) {
if (buttonType.equals(ButtonType.SAVE)) {
try {
articleForm.commit();
articleService.saveArticle(articleForm.getArticle());

if (event.isNewModel()) {

M odel WasA ddedEvent<Article> event = new Model WasAddedEvent<Article>(
this, Article.class);

event.setAddedM odel (articleForm.getArticle());

dispatchEvent(event);

/I show added tray notification
ShowTrayNoatificationEvent trayEvent = new Show TrayNotificationEvent(
this, translate("articles.added.title"),
translate("articles.added.info",
new Object[] { articleForm
.getArticle().getName() }));
trayEvent.setExecutionType(ExecutionType. ASY NC);
dispatchEvent(trayEvent);

}else{
M odel WasUpdatedEvent<Article> event = new M odel WasUpdatedEvent<Article>(
this, Article.class);
event.setUpdatedM odel (arti cleForm.getArticle());
dispatchEvent(event);

/I show updated tray notification
ShowTrayNotificationEvent trayEvent = new ShowTrayNotificationEvent(

this, translate("articles.updated.title"),

translate("articles.updated.info”,

new Object[] { articleForm
.getArticle().getName() }));

trayEvent.setExecutionType(ExecutionType. ASY NC);
dispatchEvent(trayEvent);

}

interceptor.setCloseAbl e(true);
messageBox.close();

} catch (InvalidValueException €) {
interceptor.setCloseAble(fal se);

}

24

spring-mvp 1.0 Manual

129

130 } ese{

131 interceptor.setCloseAble(true);

132 messageBox.close();

133

134}

135

136 }

137 });

138

139 }

140

141 @HandleSpringMvpEvent

142 public void handleDeleteArticleEvent(final DeleteM odel Event<Article> event) {
143

144 MessageBox deleteConfirmation = new MessageBox(getMainWindow(),
145 trandate("articles.delete.confirmation.title"),

146 MessageBox.lcon.QUESTION, translate(

147 “articles.delete.confirmation.question”,

148 new Object[] { event.getToDelete().getName() }),

149 new MessageBox.ButtonConfig(ButtonType.NO, transate("'no")),
150 new MessageBox.ButtonConfig(ButtonType.Y ES, translate("yes")));
151 deleteConfirmation.show(true, new MessageBox.EventListener() {
152

153 private static final long serialVersionUID = -7925625315552580719L ;
154

155 @Override

156 public void buttonClicked(ButtonType buttonType) {

157 if (buttonType.equals(ButtonType.YES)) {

158 articleService.deleteArticle(event.getToDelete());

159

160 // dispatch deleted event

161 ModelWasDel etedEvent<Article> del etedEvent = new Model WasDel etedEvent<Article>(
162 this, Article.class);

163 deletedEvent.setDel etedM odel (event.getToDel ete());

164 dispatchEvent(deletedEvent);

165

166 // show natification

167 ShowTrayNotificationEvent notificationEvent = new ShowTrayNotificationEvent(
168 this, translate(" articles.del eted.title"),

169 trandate(" articles.del eted.info"”,

170 new Object[] { event.getToDelete()

171 .getName() }));

172 notificationEvent.setExecutionType(ExecutionType. ASY NC);

173 dispatchEvent(notificationEvent);

174 '}

175

176 }

177 });

178

179 }

180

181}

182

As you can see the Ul Art i cl eSer vi ce contains the backend Arti cl eServi ce and two event
handler methods for opening editors in PopUps or confirmation dialogs.

25

spring-mvp 1.0 Manual

Ul Servicesnormally have asingleton scope for aVaadin application. This means each V aadin application
instance contains only one instance of the Ul Service.

In the spring-mvp application all Ul Services are configured in one Spring context configuration file.

Example 16. springMvp-demo/src/main/webapp/WEB-INF/spring/services/ui-
ser vices-context.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <beans xmlns="http://www.springframework.org/schema/beans"

3 xmins:xsi="http://www.w3.0rg/2001/X ML Schema-instance"

4 xsi:schemal ocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/
beans/spring-beans.xsd">

5

6 <!-- Set the scope of the Ul service to singleton so there is only one instance

7 of the service per Vaadin application -->

8 <bean id="abstractUiService"

9 class="de.flexguse.vaadin.addon.springMvp.service. AbstractUl Service"

10 scope="singleton" abstract="true">

11 <property name="translator" ref="translator" />

12 <property name="eventDispatcherManager" ref="dispatcherManager" />

13 </bean>

14

15 <bean id="uiShoppingCartService"

16 class="de.flexguse.vaadin.addon.springMvp.demo.ui.service.Ul ShoppingCartService"
17 scope="singleton" parent="abstractUiService" />

18

19 <bean id="uiArticlesService"

20 class="de.flexguse.vaadin.addon.springMvp.demo.ui.service.Ul ArticlesService"
21 scope="singleton" parent="abstractUiService" />

22

23 <bean id="uiMessageService"

24 class="de.flexguse.vaadin.addon.springMvp.demo.ui.service.Ul M essageService"
25 scope="singleton" parent="abstractUiService" />

26

27 </beans>

6. spring-mvp additional features

spring-mvp provides additional features which makes V aadin application development easier.

6.1. Application notifications

Vaadin provides the possibility to show different notification types. spring-mvp provides events for all
different notification types. All notification eventstake the title and the message as constructor arguments.

The event handler methods are implemented in Spri ngM/pVaadi nAppl i cat i on which listen for
Event Scope. Spri ngM/pAppl i cati on and Event Scope. Al | Spri ngM/pAppl i cati ons.

6.1.1. ShowEr r or MessageEvent

Dispatching this event shows an Error message.

26

spring-mvp 1.0 Manua

Error message

For important notifications

6.1.2. ShowHumani zedMessageEvent

Dispatching this event shows a notification.

Humanized message

For minimal annoyance

6.1.3. ShowTrayNot i fi cati onEvent

Dispatching this event shows a Tray notification.

Tray notification

Stays up longer - but away

6.1.4. Showar ni ngMessageEvent

Dispatching this event shows awarning message.

Warning message

For notifications of medium importance

6.2. Model events

Let's say thereisaneed to build an application which is aware of Model changes (like the the springMvp-
demo application is).

In this scenario every time a model was added, updated or deleted an event is dispatched. For this three
szenarios generic events were created.

27

spring-mvp 1.0 Manual

All following events have the event scope Event Scope. Al | Spri ngM/pAppl i cati ons and the
execution type Execut i onType. ASYNC. Normally they are dispatched in the Ul Ser vi ces.

6.2.1. Model WAsAddedEvent

Dispatch this event if the Model was newly created and added.

1 Model WasA ddedEvent<Article> event = new Model WasAddedEvent<Article>(this, Article.class);
2 event.setAddedM odel (articleForm.getArticle());
3 dispatchEvent(event);

6.2.2. Model WasDel et edEvent

Dispatch this event if the Model was del eted.

1 ModelWasDel etedEvent<Article> deletedEvent = new Model WasDel etedEvent<Article>(this, Article.class);
2 deetedEvent.setDeletedModel (event.getToDel ete());
3 dispatchEvent(deletedEvent);

6.2.3. Mbdel WAsUpdat edEvent

Dispatch this event if the Model was updated.

1 Model WasUpdatedEvent<Article> event = new Model WasUpdatedEvent<Article>(this, Article.class);
2 event.setUpdatedM odel (arti cleForm.getArticle());
3 dispatchEvent(event);

6.3. Internationalization

Most production ready applications need to be available in several languages. spring-mvp provides a
Tr ansl at or which helpsto get trandation from resource bundles utilizing the Spring message source.

28

spring-mvp 1.0 Manual

<<Java Interface:==

&9 Translator

de. flexguse. vaadin. addon. springhd v p. locsle

@ setMeszagesSourcelAbstractMessageSource) void
@ =setlocalelLocale):void

@ =etlanguage(String) void

@ getTranslation{String):String

@ gefTranslation(String, Object[]): String

@ getlUsedlocalel).Locale

2

zzJava Clagg>=»
(% Translatorimpl
de.flexguss. vasdin.addon. springhvp.locale. impl
{fTrﬂnslaturlmpI[}
@ sethessageSourcelAbstractMeszageSource) void
& setlocaleLocale):void
@ setlanguage(String):void
@ gefTranslation(String): String
@ getTranslation{String, Object[l):String
@ getlzedLocale().Locale
& setlocaleFromRequestiboolean): void

To usethe spring-mvp Tr ansl at or define a Spring MessageSource in the web application scope.

Example 17. springM vp-demo/sr c/main/webapp/spring/web-application-
context.xml

1 <!-- the Spring ResourceBundleSource to access the ResourceBundles containing

2 thetrandations for the application -->

3 <bean id="resourceBundleM essageSource"

4 class="org.springframework.context.support.Rel oadabl eResourceBundl eM essageSource'>
5 <property name="basenames" value="WEB-INF/|ocale/demo" />

6 <property name="cacheSeconds" value="60" />

7 </bean>

29

spring-mvp 1.0 Manual

The Tr ansl at or itself must be defined in Vaadin application scope because it is possible each Vaadin
application uses another locale.

Example 18. springMvp-demo/src/main/webapp/spring/vaadin-application-
context.xml

<l-- The Translator for this application -->
<bean id="translator"
class="de.flexguse.vaadin.addon.springMvp.local e.impl.Transl atorl mpl "
scope="singleton">
<property hame="messageSource" ref="resourceBundleM essageSource" />
<property name="localeFromRequest" value="true" />
</bean>

~No b wNBE

If the Vaadin application uses authentication and user profilesthe localein the Tr ansl| at or can be set
accordingly to the usersettings. In case of the springMvp-demo application there is no authentication and
the locale is taken from the HTTP request.

Make the HTTP request available for Tr ansl at or | npl by adding a listener to web.xml.

Example 19. springM vp-demo/sr ¢/main/webapp/web.xml

1 <!-- needed to set the trandlators locale from the browser request -->
2 <listener>

3 <listener-class>org.springframework.web.context.request. RequestContextL istener</listener-class>
4 </listener>

After having the Tr ansl at or configured, it can be autowired to each place it is needed (or taken i.e.
from Pr esent er or Ul Ser vi ce).

A missing resource in the resource bundle does not cause an exception but an information which resource
ismissing for which locale.

30

